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A new method of determining the dynamic characteristics of multilayered semi-bounded media with defects of the inclusion or
crack type at the layer interfaces [1] is used to solve antiplane problems. Systems of integral equations of the corresponding
boundary-value problems are constructed and the properties of their kernels are investigated. The dispersion curves of the
determinants and matrix elements of these systems are analysed as functions of the number of layers and their elastic and geometric
characteristics © 2005 Elsevier Ltd. All rights reserved.

1. GENERAL MATRIX-FUNCTIONAL RELATIONS

In the problem of the harmonic oscillations of a package of N plane-parallel linearly-deformable layers,
which has physical-mechanical properties of crack- or cavity-type defects at the interfaces, formulae
have been obtained that, in terms of Fourier transforms, express the amplitudes of the displacement
vectors W, of points of the medium and the stresses Ty at the layer interfaces as functions of the
amplitudes of the vectors of the surface load T, and displacement jumps £, (o, B) at the edges of the
cracks [1, 2]

N-1
W (o, B, z) = Ky_z, (0, B, z)Ty(an, B) + 2 R.(c, B)f, (o, B) (1.1)
m=1
N-1
Ty(@,B) = Ly(0 BYTo(0, B)+ ¥, Lm0 BIE,(@ B), & = 1,2, N (12)
m=1

The subscript k corresponds to the interface of the k-th and (k + 1)-th layers, m corresponds to defects
on the boundary of the m-th and (m + 1)-th layers, z; is a local coordinate, which varies within the
thickness of the k-th layer (|z;| < &), Ty = Fty, Ty = Fty, W, = Fw,, where F is the two-dimensional
Fourier transform with respect to the variables x and y with parameters o and B, t, = {ty, t5, t3;} are
stress vectors characterizing the interaction between the layers, and w, = {wy, wy, wy} are the
displacement vectors of points of the k-th layer.

The matrices K,,, L,, Ry, Ly, have the uniform structure characteristic for Green’s matrix-symbols
of the appropriate boundary-value problems for media without defects [3]. Their elements depend on
the oscillation frequency ® and on the geometric and mechanical properties of the layers: the thickness
2hy, the density py, the shear modulus L, and Poisson’s ratio v,.
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If mixed conditions are specified on the surface of the medium and at the layer interfaces
Z = 0: Wl = WO(X, )’), (xa )’) € QO; t() = O’ (x’ }’) € QO

g = =t = (), (6y)eQp; Awe =0, (xy)€Q,. p=12,..,M

then the matrix-functional relations (1.1) for k = 1 and z; = h,, together with relations (1.2) for
k=1,2,...,N-1, lead to systems of integral equations for the contact stresses ty(x, y) and jumps of
the displacement vectors Awy,(x, y) at the edges of the cracks. Here Qj is the region of contact of the
punch with the surface of the medium z = 0, wy are the displacements given in the region Q, My is the
number of cracks in the plane z;, = —f, Q, are the regions occupied by the cracks, and t;, are given
stresses at the edges of the cracks.

We will derive such systems for the case of antiplane vibrations.

2. FUNCTIONAL RELATIONS DESCRIBING ANTIPLANE
OSCILLATIONS

We will consider the problem of harmonic oscillations of a package of N plane-parallel ideally elastic
layers of thickness H = 2(h; + h, + ... + hy) with rigidly restrained lower face and occupying a volume
—H<z<0,—00 <x,y< +o0 (I is the half-thickness of the k-th layer). At the interfaces of the physical-
mechanical parameters there are defects of the crack type, situated in the regions

Qun i {ze =My a1, Sx<by,, —0o<y<+eo}, m= 1,2, .., M, k=12.,N-1

The surface of the medium is subject to a certain dynamical action characterized by the vector of
distributed stresses ty(x, y)e™™, which is either given or may be determined by solving a contact problem.

We shall assume that the given and unknown vector quantitics have only one non-zero component,
which does not depend on the y coordinate or, in terms of Fourier transforms, on the parameter p:

T() = {09 TO(OL),O}, wk = {Oa Wk(as zk)’0}9 Tk = {O’ Tk((l),O}, fk = {01 fk(a),()}

In that case the matrix relations (1.1) and (1.2) become functional relations and the construction of
the solution is simplified considerably.

In terms of Fourier transforms, we will express Green’s functions of packages of m layers (im = 1, 2,
..., N) rigidly coupled with an undeformable base as ratios of entire functions:

k,(z)
A

m

G,(2) =

m
, -H,<z<0, H, =2 hy_,4;

n=1

Note that k,,(z) and A,, depend on the parameter o of the Fourier transform, the frequency of
harmonic oscillations o, and the geometric and mechanical parameters of layers N, N - 1, etc. to
N —m + 1, inclusive. Throughout, in order to abbreviate the notation, the only argument indicated in
functional relations will be that guaranteeing their unambiguous interpretation.

In the case of antiplane oscillations, the matrices occurring in formulae (1.1) and (1.2) are replaced
by the corresponding functions

k+ 1k pr 1 ()

K h) = (-1
Noks1(l) = (1) WAy

A
L= (D) E2E L, = (<D

kem-1 1 [MuBn_iRn(hy), k>m
Ay’ { Ay=1 (2.1)

A\ Ay nRi(hy), k<m’

L, k=1

m

Rim = (=D "W/ Ry (Bl s (B)IAy, k£ 1, k>m

m

DD, (o DAy /Ay, k#E1, kSm
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where Ry(h;) and Dy(h,) are defined by the recurrence formulae
Rl(hk) = GZkSh(ZGZkhk)9 Dl(hk) = Ch(262khk)

Ri(hy) = Ry(h)Dy_((hy_y) + 8k Dy(B)R (B _y)
Dy(hy) = Dl(hk)Dk_1(hk—1)+gk-1UEiR1(hk)Rk—1(hk-1)

/ 2 P 2 Mgy
0, = |00 ——m, 4 =—; k=273..,N
2k ™ 8k-1 ™

If mixed conditions are prescribed at the surface of the medium and the layer interfaces, the required
system of integral equations is set up from the relations

N-1 N-1
Wi(h) = Ky(h)To+ Y, Lofme Ti = LiTo+ Y Lipfp k=1,2,..,N-1
m=1 m=1
Mm
fm(@) = Y F(Aw,,)
p=1

We define a matrix K(o)) = |[Kj ||£’ ;=1 with elements

Kll = KN(hl)’ Klj = jl = Lj—l’ KU = L(l—l)(]—l); i,j = 2, 3, ...,N

and integral operators

H(Qg = [k(x-E)q®)dE, k(x) = 51& [K(oe " da
a 8

N-1 M,
Lt Awy) = K (Qp)to+ D Y Hyer 1y( QAW @ = 1,2, N
k=1Im=1

The choice of the contour & is dictated by the radiation principle [4]. The matrix K(o) will be called
the matrix-symbol of the system of integral equations just constructed.

In the notation we have adopted, the integral equation of dimension M + 1 (M =M; + M, + ... +
My _4 is the total number of cracks in the medium) may be written in the form

£i(t, Awyy) = wo(x), x€ Qo £, (1, Awy,) = 1,,(x), x€ Q,,

n=12.,M; p=12.,N-1

These equations enable us to investigate various aspects of the dynamics of a multilayered base.
Setting f,,(0) = O forallm = 1,2, ..., N - 1, we obtain a contact problem for a multilayered base
without defects, arriving at the well-known one-dimensional integral equation

Taking Ty(o) = 0, we obtain the dynamic problem of the oscillations of a multilayered medium
generated by oscillations of only the edges of the cracks, and the corresponding system of convolution
integral equations

N-1 M,

P () AWy, = t(x), x€ Q
(p+1)(k+1) km km pn pn
k=1m=1 (2‘2)

n=12.,M; p=12.,N-1
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Since this problem is of independent interest, we re-denote the matrix symbol of the last system by
L(o) = ||L; | = L. It is obvious that L(c:) is obtained from K(c) by eliminating the first row and the
first column.

Note that integral equations (2.2), considered with the same mechanical parameters for all the layers,
give the solution of the dynamic problem for a homogeneous layer with a system of cracks in the planes
z, = —h,.

’ Haviﬁg functional relations and integral equations of the problems for a package of layers, it can
easily be generalized to the case of a layered half-space. When that is done, the general appearance of
the notation is the same, but when the elements of the matrix-symbols K™ (o) and L™ (o) are defined,
formulae (2.1) must be considered with

kl(hN) = 1, Al(hN) = GZN
Putting
ki(hy) = 1, Aj(hy) = 05y, Dy(hy) =1, Ri(h)) = Oy

in these relations, we obtain functional relations and the matrix L (or) for a layered space.

3. EXAMPLE: THE CASE N =

Forming the system of functional equations for N = 3, we have:
the displacements of points of the medium surface

Wi(hy) = (k3(h) T/ — Ay fy + A fr)/A, 3.1
the stresses at the layer interfaces

Ty = (=ATg— W Ri(h)Af1 + W Ry (h) Dy (h3) f)/A,

32
Ty = (A To+ Wi Ry (B)Dy(h3) f — MaRo(h) Dy (h3) f3)/ Ay 3-2)
To construct the system of integral equations, we rewrite relations (3.1) and (3.2) in the form
W(a) = K(a)Q(ax) (3.3)

where
Q = {To fufo}y W= {Wi(k) T, To}, K@) = Ky,
Under these conditions,
detK = ch(20,,h,)Q(hy, h3)/A;,  ©(hy, hy) = P3Gy, sh(26,,h,)ch(20,3k5)

Using Egs (3.3), we obtain integral equations and systems of integral equations for a variety of problems.
We present the system of integral equations in the general case, when

To(o)#0, fi(a)#0, f(a)=0
‘We have
£1(tg, Awy,) = w(x), x€ Qy, Qp:{z=0,|x|<a, —o<y< +oo}
Ly(te, Awpy) = (%), a1, <x<by,, n=12,..,M
L3(t0 AWp) = 13,(%), G, SXSby,, p=1,2,.., M
Putting fi(a) = 0 (or f2(a) = 0), we obtain a system of integral equations for the case of a single

crack or a system of cracks situated in a three-layered medium only in the plane z = —2A; (or only in
the plane z = -2k - 2h,).
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When To(or) = 0, only relations (3.2) participate in the formation of the system of integral equations;
they may be written in matrix form as

T(o) = L()f(a), T = {T,, T,}, £={f,f,}
where

4. PROPERTIES OF THE MATRIX-SYMBOLS OF SYSTEMS OF
INTEGRAL EQUATIONS

In order to determine classes of well-posedness and to construct solutions of systems of integral
equations, it is necessary to study the properties of the elements of their matrix-symbols. It is most
important to describe the asymptotic behaviour of the elements as |ot| — o and to investigate the
behaviour of the real zeros and poles (dispersion curves) of the elements and the determinants of these
matrices in the (Reo, ®) plane.

It has been established that the matrices K(cr), L(ct) are symmetric and may be represented in the
form

K(a) = Ailv"kij(a)"fj]j=ls L(a) = Z%'vlllij(a)||2,;:1

The elements k;(a), /(o) are entire even functions of the parameter o; Ay is the denominator of Green’s
function Gy for a multilayered package without defects.

For the elements of the matrix K(o) on the contour § we have the following asymptotic estimates as
loe] — e

-1
B+ 000l ™), Ky = ~rE= ol + 0™, 1223, N

Kij(@) = (-1 P (o)l +0(ef D)), j=23,.,N

Ky(o) =

K;(o) = (—1)”“1%1%(&)[0(“1 +0(of™)], izj1

where

2j—-i j-1
Py(0) = j_l——exp[—lal Z.zhk]
[T +e k=i
k=i

The asymptotic behaviour of the element K;; for a multilayered medium is identical with the asymptotic
behaviour of the function Gy(o, 11;), while that of the remaining diagonal elements K;; is determined
by the asymptotic behaviour of the function —G[l(oc, Mo/ — 1 + W)-

The method we have used yields relations convenient for numerical analysis not only of the elements
but also of the determinants of the matrices

_ Dy(h))detL(e) _ WD)
detK(a) = — 55— detl(@) = (-1) TEMM)

Note that in the case of a single crack in the plane z,, = —,, of an N-layered medium, we have

detK(a) = (—I)N_lAm(hl,hz,. hodAy By By 1y oo By AN

ey Fopy
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Hence it follows that if the following conditions are satisfied
Ay _mlhphy_ 1y ooy by y) = Ay(hy, By, . hy)
Ay_nlhy by _ 1y o hy ) = Ap(hy by, . h,) (n+m=N)

then the determinants of the matrices corresponding to a single crack in the plane z, = —h,, or in the
plane z, = -k, have the same zeros. In a homogeneous medium, the determinants of the matrix K with
the crack situated at the level z = - or at the level z = -H + A are equal.

We also note that if a single crack is situated in the Elane z = -H/2 of a homogeneous layer, then all
the zeros of the element Ky, with the exception of o* = p;w%/,, coincide with the zeros of K, that
is, with the zeros of Green’s function of a layer without defects.

5. NUMERICAL RESULTS

For the case considered in Section 3 — a three-layered medium - we present the results of numerical
analysis of the dispersion curves of the elements (Fig. 1) and the determinants (Fig. 2) of the matrix
K, as a function of the geometric and mechanical parameters of the problem with v; = 0.3, p; = 1
(i=1,2,3),H =1, 2h; = hy = 2h; = 1/4; the dimensionless values of the shear moduli are indicated
in the appropriate parts of the figures; the curves of the poles are represented by the solid curves.

10

@) =l =1LE,=5

1 Crack
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For the diagonal elements of the matrices, as in the case of a defect-free medium, one observes
alternation of zeros and poles (Fig. 1). When there is a system of cracks in a homogeneous layer, the
diagonal elements may have identical zeros. Thus, curves 2 and 3 in Fig. 1 are common to the elements
Ky, K;; and Kj3, and curve ! is common to the elements Ky, and Kjs.

In Fig. 2 we show dispersion curves of the determinants K(c, ®) corresponding to the presence of
a single crack in the plane z = —H/2 and two cracks in the planes z = -H/4, z = -3H/4. In the case of
one crack in a layered medium, detK(a, ®) has zeros and poles beginning from some point o*. If there
are two or more cracks in the medium, a curve of zeros occurs emanating from the origin. It is
characteristic that for a crack in the middle of a homogeneous layer, all the zeros of the determinant
coincide with the odd-numbered zeros of the element K;; (with the curves numbered as they appear
on the axis o = (), that is, with the odd-numbered zeros of Green’s function for a defect-free mediam.
For a layered medium, this is true only for a certain symmetry of the mechanical and geometric
parameters of the problem, as for example in the case shown in Fig. 2.
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